Testwiki:Formule

Izvor: testwiki
Prijeđi na navigaciju Prijeđi na pretraživanje

Predložak:Pomoć sadržaj nazad

Matematičke (i druge) formule na Wikipediji se pišu pomoću kôda preuzetog iz uređivačkog programa TeX (vidi: LaTeX). Taj se kôd kod prikazivanja stranice pretvara u HTML kôd (koji se onda prikazuje znak po znak) ili u sliku ekstenzije PNG, ovisno o tome kako je namješteno u postavkama.

Sintaksa

Kôd se upisuje unutar <math> ... </math>, što je dostupno i na traci s alatima (gumb n). Slično kao i u HTML-u, višak razmaka i prelazak u novi red se ignoriraju. Wikipedijini alati (npr. podebljan/kurzivni tekst, predlošci, tablice, potpis, određivanje podnaslova itd.) ne rade unutar kôda za matematičke formule.


Prikazivanje

Kad se formula prikazuje u PNG formatu, dobije se crn tekst na bijeloj pozadini (ne prozirnoj). To ne ovisi o pregledniku. Veličina i oblik teksta se razlikuje od normalnog teksta (onog izvan kôda za matematičke formule), a problem je i vertikalno poravnavanje.

Ako želite da se formula prikaže u PNG formatu iako je dovoljno jednostavna da se može prikazati i u HTML formatu, na kraj formule dodajte \!,


Razlike između HTML i TeX kôda

Nekad je jednostavnije koristiti HTML kôd, ali on često nije dovoljno dobar, kao što je prikazano u sljedećoj tablici:

TeX kôd prikaz u PNG formatu HTML kôd prikaz kao HTML
<math>\alpha\,</math> α &alpha; α
<math>\sqrt{2}</math> 2 &radic;2 √2
<math>\sqrt{1-e^2}</math> 1e2 &radic;(1&minus;''e''&sup2;) √(1−e²)

Za posebne znakove, eksponente i indekse, vidi Wikipedija:Kako uređivati stranicu#Vrste slova i pisanja.

Zašto HTML

  • Formule pisane unutar teksta uvijek su pravilno vertikalno poravnane.
  • Uvijek su iste veličine i oblika teksta i boje pozadine kao i ostatak teksta.
  • Stranica se brže učitava.

Zašto TeX

  • Kôd je jednostavnije pisati, i estetski više zadovoljava.
  • TeX kôd se može pretvoriti u HTML pa se kod jednostavnih formula mogu iskoristiti sve pogodnosti HTML-a.
  • Može se pretvoriti u MathML i koristiti u preglednicima koji ga podržavaju. (vidi: MathML Predložak:Eng oznaka )
  • Nema razlike u prikazu kod različitih preglednika ili različitih verzija HTML-a.


Funkcije, simboli, posebni znakovi

Naglasci/dijakritici
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} a´a`a^a~a˘
\check{a} \bar{a} \ddot{a} \dot{a} aˇa¯a¨a˙
Standardne funkcije
\sin a \cos b \tan c sinacosbtanc
\sec d \csc e \cot f secdcscecotf
\arcsin h \arccos i \arctan j arcsinharccosiarctanj
\sinh k \cosh l \tanh m \coth n sinhkcoshltanhmcothn
\operatorname{sh}o \operatorname{ch}p \operatorname{th}q shochpthq
\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t argshrargchsargtht
\lim u \limsup v \liminf w \min x \max y limulim supvlim infwminxmaxy
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g infzsupaexpblnclgdlogelog10fkerg
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n deghgcdiPrjdetkhomlargmdimn
Modularna aritmetika
s_k \equiv 0 \pmod{m} a \bmod b sk0(modm)amodb
Derivacije
\nabla \partial x dx \dot x \ddot y xdxx˙y¨
Skupovi
\forall \exists \empty \emptyset \varnothing
\in \ni \not \in \notin \subset \subseteq \supset \supseteq ∉
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
Operatori
+ \oplus \bigoplus \pm \mp - +±
\times \otimes \bigotimes \cdot \circ \bullet \bigodot ×
\star * / \div \frac{1}{2} */÷12
Logika
\land \wedge \bigwedge \bar{q} \to p q¯p
\lor \vee \bigvee \lnot \neg q \And ¬¬q&
Korijeni
\sqrt{2} \sqrt[n]{x} 2xn
Relacije
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} =˙=def
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto <>≢or
Geometrija
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ 45
Strelice
\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow ↛
\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow
\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow
\nLeftrightarrow \longleftrightarrow
Posebno
\eth \S \P \% \dagger \ddagger \ldots \cdots ð§%
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar ı
\ell \mho \Finv \Re \Im \wp \complement \diamondsuit
\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
Nesortirano
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown 𝕜
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus ȷ
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq ⨿
\dashv \asymp \doteq \parallel

Eksponenti, indeksi, integrali

Funkcija Kôd Izgled
HTML PNG
Eksponent a^2 a2 a2
Indeks a_2 a2 a2
Grupiranje a^{2+2} a2+2 a2+2
a_{i,j} ai,j ai,j
Kombinacija x_2^3 x23
Prethodeći i/ili dodani eksponenti i indeksi \sideset{_1^2}{_3^4}\prod_a^b 3412ab
{}_1^2\!\Omega_3^4 12Ω34
"Povrh" \overset{\alpha}{\omega} ωα
\underset{\alpha}{\omega} ωα
\overset{\alpha}{\underset{\gamma}{\omega}} ωγα
\stackrel{\alpha}{\omega} ωα
Derivacije (samo u PNG-u) <code>x', y'', f', f''\!</code>   x,y,f,f
Derivacije (kurzivno f nekad preklapa apostrofe u HTML-u) <code>x', y'', f', f''</code> x,y,f,f x,y,f,f
Točke \dot{x}, \ddot{x} x˙,x¨
Potcrtano, "potez", vektori \hat a \ \bar b \ \vec c a^ b¯ c
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} ab cd def^
\overline{g h i} \ \underline{j k l} ghi jkl_
Strelice A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C An+μ1BTn±i1C
Vitičaste zagrade gore \overbrace{ 1+2+\cdots+100 }^{5050} 1+2++1005050
Vitičaste zagrade dolje \underbrace{ a+b+\cdots+z }_{26} a+b++z26
Suma \sum_{k=1}^N k^2 k=1Nk2
Suma (drugi oblik) \textstyle \sum_{k=1}^N k^2 k=1Nk2
Produkt \prod_{i=1}^N x_i i=1Nxi
Produkt (drugi oblik) \textstyle \prod_{i=1}^N x_i i=1Nxi
Koprodukt \coprod_{i=1}^N x_i i=1Nxi
Koprodukt (drugi oblik) \textstyle \coprod_{i=1}^N x_i i=1Nxi
Limes \lim_{n \to \infty}x_n limnxn
Limes (drugi oblik) \textstyle \lim_{n \to \infty}x_n limnxn
Integral \int_{-N}^{N} e^x\, dx NNexdx
Integral (drugi oblik) \textstyle \int_{-N}^{N} e^x\, dx NNexdx
Dvostruki integral \iint_{D}^{W} \, dx\,dy DWdxdy
Trostruki integral \iiint_{E}^{V} \, dx\,dy\,dz EVdxdydz
Četverostruki integral \iiiint_{F}^{U} \, dx\,dy\,dz\,dt FUdxdydzdt
Path integral \oint_{C} x^3\, dx + 4y^2\, dy Cx3dx+4y2dy
Presjek \bigcap_1^{n} p 1np
Unija \bigcup_1^{k} p 1kp

Razlomci, matrice, rad u više redova

Operacija Kôd Izgled
Razlomci \frac{2}{4}=0.5 24=0.5
Mali razlomci \tfrac{2}{4} = 0.5 24=0.5
Veliki (normalni) razlomci \dfrac{2}{4} = 0.5 24=0.5
Veliki (ugniježđeni) razlomci \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a 2c+2d+24=a
"Povrh" \binom{n}{k} (nk)
Mali "Povrh" \tbinom{n}{k} (nk)
Veliki (normalni) "Povrh" \dbinom{n}{k} (nk)
Matrice
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
xyzv
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
|xyzv|
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
xyzv
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
[0000]
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
{xyzv}
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
(xyzv)
\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)
(abcd)
Slučajevi
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
f(n)={n/2,if n is even3n+1,if n is odd
Jednadžbe u više redova
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
f(x)=(a+b)2=a2+2ab+b2
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}
f(x)=(ab)2=a22ab+b2
Jednadžbe u više redova ({lcr} definira broj i poravnanje stupaca - l=lijevo(left), c=sredina(center), r=desno(right). Dakle, prvi stupac će biti poravnat lijevo, drugi u sredinu, treći desno. (ne koristiti ako nije prijeko potrebno))
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
z=af(x,y,z)=x+y+z
Jednadžbe u više redova (dodatno objašnjenje)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
z=af(x,y,z)=x+y+z
Lomljenje dugačke formule da prijeđe u novi red ako je potrebno

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

f(x)=n=0anxn=a0+a1x+a2x2+

Slučajevi
\begin{cases}
    3x + 5y +  z \\
    7x - 2y + 4z \\
   -6x + 3y + 2z 
\end{cases}
{3x+5y+z7x2y+4z6x+3y+2z

Vrste slova/fonta

Grčki alfabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta ABΓΔEZ
\Eta \Theta \Iota \Kappa \Lambda \Mu HΘIKΛM
\Nu \Xi \Pi \Rho \Sigma \Tau NΞΠPΣT
\Upsilon \Phi \Chi \Psi \Omega ΥΦXΨΩ
\alpha \beta \gamma \delta \epsilon \zeta αβγδϵζ
\eta \theta \iota \kappa \lambda \mu ηθικλμ
\nu \xi \pi \rho \sigma \tau νξπρστ
\upsilon \phi \chi \psi \omega υϕχψω
\varepsilon \digamma \vartheta \varkappa εϝϑϰ
\varpi \varrho \varsigma \varphi ϖϱςφ
Skupovi
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} 𝔸𝔹𝔻𝔼𝔽𝔾
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} 𝕀𝕁𝕂𝕃𝕄
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} 𝕆𝕊𝕋
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} 𝕌𝕍𝕎𝕏𝕐
Podebljano (abeceda)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} 𝐀𝐁𝐂𝐃𝐄𝐅𝐆
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} 𝐇𝐈𝐉𝐊𝐋𝐌
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} 𝐍𝐎𝐏𝐐𝐑𝐒𝐓
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} 𝐔𝐕𝐖𝐗𝐘𝐙
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} 𝐚𝐛𝐜𝐝𝐞𝐟𝐠
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} 𝐡𝐢𝐣𝐤𝐥𝐦
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} 𝐧𝐨𝐩𝐪𝐫𝐬𝐭
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} 𝐮𝐯𝐰𝐱𝐲𝐳
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} 𝟎𝟏𝟐𝟑𝟒
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} 𝟓𝟔𝟕𝟖𝟗
Podebljano (alfabet)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} ABΓΔEZ
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} HΘIKΛM
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} NΞΠPΣT
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} ΥΦXΨΩ
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} αβγδϵζ
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} ηθικλμ
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} νξπρστ
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} υϕχψω
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} εϝϑϰ
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} ϖϱςφ
Kurziv
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} 𝐴𝐵𝐶𝐷𝐸𝐹𝐺
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} 𝐻𝐼𝐽𝐾𝐿𝑀
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} 𝑁𝑂𝑃𝑄𝑅𝑆𝑇
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} 𝑈𝑉𝑊𝑋𝑌𝑍
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} 𝑎𝑏𝑐𝑑𝑒𝑓𝑔
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} 𝑖𝑗𝑘𝑙𝑚
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} 𝑛𝑜𝑝𝑞𝑟𝑠𝑡
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} 𝑢𝑣𝑤𝑥𝑦𝑧
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} 01234
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} 56789
Roman font
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} ABCDEFG
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} HIJKLM
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} NOPQRST
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} UVWXYZ
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} abcdefg
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} hijklm
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} nopqrst
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} uvwxyz
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} 01234
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} 56789
Fraktur font
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} 𝔄𝔅𝔇𝔈𝔉𝔊
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} 𝔍𝔎𝔏𝔐
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} 𝔑𝔒𝔓𝔔𝔖𝔗
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} 𝔘𝔙𝔚𝔛𝔜
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} 𝔞𝔟𝔠𝔡𝔢𝔣𝔤
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} 𝔥𝔦𝔧𝔨𝔩𝔪
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} 𝔫𝔬𝔭𝔮𝔯𝔰𝔱
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} 𝔲𝔳𝔴𝔵𝔶𝔷
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} 01234
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} 56789
"Rukopis"
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} 𝒜𝒞𝒟𝒢
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} 𝒥𝒦
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} 𝒩𝒪𝒫𝒬𝒮𝒯
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} 𝒰𝒱𝒲𝒳𝒴𝒵
Hebrejski
\aleph \beth \gimel \daleth
Funkcija Kôd Izgled
sprečavanje automatskog kurziva kod slova \mbox{abc} abc abc
pomiješano (loše) \mbox{if} n \mbox{is even} ifnis even ifnis even
pomiješano (dobro) \mbox{if }n\mbox{ is even} if n is even if n is even
mixed italics (pouzdanije: "~" daje razmak koji se neće
prekidati na kraju reda, a "\ " samo daje razmak)
\mbox{if}~n\ \mbox{is even} ifn is even ifn is even

Zagrade i slično

Ne koristite unutar matematičkod kôda znakove "(" i ")" ako želite u zagradu staviti razlomke ili nešto "visoko":

Funkcija Kôd Izgled
Loše ( \frac{1}{2} ) (12)
Dobro \left ( \frac{1}{2} \right ) (12)
Funkcija Kôd Izgled
Oble zagrade \left ( \frac{a}{b} \right ) (ab)
Uglate zagrade \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack [ab][ab]
Vitičaste zagrade \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace {ab}{ab}
"Špičaste" zagrade \left \langle \frac{a}{b} \right \rangle ab
Apsolutna vrijednost i dvostruke okomite crte \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| |ab|cd
Funkcije zaokruživanja \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil abcd
Kose crte \left / \frac{a}{b} \right \backslash /ab\
Strelice \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow ababab

Različite se vrste zagrada mogu
miješati dok je god broj oznaka
\left i \right jednak.

\left [ 0,1 \right )
\left \langle \psi \right |

[0,1)
ψ|

Ako ne želite zagradu, poslije
\left ili \right dodajte točku.
\left . \frac{A}{B} \right \} \to X AB}X
Veličina zagrada \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]

((((...]]]]

\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

{{{{...

\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| ...||||
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

...

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

...

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

...

\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

////...\\\\

Razmaci

Razmaci se obično ne moraju sređivati jer su pravilno dodani automatski, no, nekad je potrebno ručno ih podesiti.

Funkcija Kôd Izgled
dva četverostruka razmaka a \qquad b ab
četverostruki razmak a \quad b ab
običan razmak a\ b a b
običan razmak bez pretvorbe u PNG a \mbox{ } b a b
velik razmak a\;b ab
srednji razmak a\>b [nije podržano]
malen razmak a\,b ab
bez razmaka ab ab
malen "negativan razmak" a\!b ab


Boje

  • {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
    x2+2x1
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    x1,2=b±b24ac2a

Sve boje koje podržava LaTeX pogledajte ovdje.

Vanjska poveznica