Popis integrala iracionalnih funkcija

Izvor: testwiki
Prijeđi na navigaciju Prijeđi na pretraživanje

Slijedi popis integrala (antiderivacija funkcija) iracionalnih funkcija. Za potpun popis integrala funkcija, pogledati tablica integrala i popis integrala.

Integrali koji uključuju r=x2+a2

rdx=12(xr+a2ln(x+r))+C
r3dx=14xr3+183a2xr+38a4ln(x+r)+C
r5dx=16xr5+524a2xr3+516a4xr+516a6ln(x+r)+C
xrdx=r33+C
xr3dx=r55+C
xr2n+1dx=r2n+32n+3+C
x2rdx=xr34a2xr8a48ln(x+r)+C
x2r3dx=xr56a2xr324a4xr16a616ln(x+r)+C
x3rdx=r55a2r33+C
x3r3dx=r77a2r55+C
x3r2n+1dx=r2n+52n+5a3r2n+32n+3+C
x4rdx=x3r36a2xr38+a4xr16+a616ln(x+r)+C
x4r3dx=x3r58a2xr516+a4xr364+3a6xr128+3a8128ln(x+r)+C
x5rdx=r772a2r55+a4r33+C
x5r3dx=r992a2r77+a4r55+C
x5r2n+1dx=r2n+72n+72a2r2n+52n+5+a4r2n+32n+3+C
rdxx=raln|a+rx|=raArshax+C
r3dxx=r33+a2ra3ln|a+rx|+C
r5dxx=r55+a2r33+a4ra5ln|a+rx|+C
r7dxx=r77+a2r55+a4r33+a6ra7ln|a+rx|+C
dxr=Arshxa=ln|x+r|+C
dxr3=xa2r+C
xdxr=r+C
xdxr3=1r+C
x2dxr=x2ra22Arshxa=x2ra22ln|x+r|+C
dxxr=1aArshax=1aln|a+rx|+C

Integrali koji uključuju s=x2a2

Pretpostavlja se da je x2>a2, za x2<a2 vidi sljedeću sekciju:

xsdx=13s3+C
sdxx=sacos1|ax|
dxs=dxx2a2=ln|x+sa|+C

Valja uočiti da je ln|x+sa|=sgn(x)Arch|xa|=12ln(x+sxs), pri čemu se uzima pozitivna vrijednost od Arch|xa|.

xdxs=s+C
xdxs3=1s+C
xdxs5=13s3+C
xdxs7=15s5+C
xdxs2n+1=1(2n1)s2n1+C
x2mdxs2n+1=12n1x2m1s2n1+2m12n1x2m2dxs2n1+C
x2dxs=xs2+a22ln|x+sa|+C
x2dxs3=xs+ln|x+sa|+C
x4dxs=x3s4+38a2xs+38a4ln|x+sa|+C
x4dxs3=xs2a2xs+32a2ln|x+sa|+C
x4dxs5=xs13x3s3+ln|x+sa|+C
x2mdxs2n+1=(1)nm1a2(nm)i=0nm112(m+i)+1(nm1i)x2(m+i)+1s2(m+i)+1+C(n>m0)
dxs3=1a2xs+C
dxs5=1a4[xs13x3s3]+C
dxs7=1a6[xs23x3s3+15x5s5]+C
dxs9=1a8[xs33x3s3+35x5s517x7s7]+C
x2dxs5=1a2x33s3+C
x2dxs7=1a4[13x3s315x5s5]+C
x2dxs9=1a6[13x3s325x5s5+17x7s7]+C

Integrali koji uključuju t=a2x2

tdx=12(xt+a2arcsinxa)+C(|x||a|)
xtdx=13t3+C(|x||a|)
tdxx=taln|a+tx|+C(|x||a|)
dxt=arcsinxa+C(|x||a|)
x2dxt=12(xt+a2arcsinxa)+C(|x||a|)
tdx=12(xtsgnxArch|xa|)+C(za |x||a|)

Integrali koji uključuju R=ax2+bx+c

dxR=1aln|2aR+2ax+b|+C(za a>0)
dxR=1aArsh2ax+b4acb2+C(za a>04acb2>0)
dxR=1aln|2ax+b|(za a>04acb2=0)+C
dxR=1aarcsin2ax+bb24ac+C(za a<04acb2<0|2ax+b|<b24ac)
dxR3=4ax+2b(4acb2)R+C
dxR5=4ax+2b3(4acb2)R(1R2+8a4acb2)+C
dxR2n+1=2(2n1)(4acb2)(2ax+bR2n1+4a(n1)dxR2n1)+C
xRdx=Rab2adxR+C
xR3dx=2bx+4c(4acb2)R+C
xR2n+1dx=1(2n1)aR2n1b2adxR2n+1+C
dxxR=1cln(2cR+bx+2cx)+C
dxxR=1cArsh(bx+2c|x|4acb2)+C

Integrali koji uključuju S=ax+b

dxxax+b=2bArthax+bb+C
ax+bxdx=2(ax+bbArthax+bb)+C
xnax+bdx=2a(2n+1)(xnax+bbnxn1ax+bdx)+C
xnax+bdx=22n+1(xn+1ax+b+bxnax+bnbxn1ax+bdx)+C

Izvori

Predložak:Popisi integrala