Pappus-Guldinova pravila

Izvor: testwiki
Prijeđi na navigaciju Prijeđi na pretraživanje

Pappus-Guldinova pravila poznata još kao Guldinova pravila i Pappusova pravila, predstavljaju matematička pravila koja omogućuju jednostavno računanje nekih rotacijskih površina (oplošja) i volumena (obujma) pomoću putanje težišta linija (likova) čijom su rotacijom nastali. Pravila se lako dokazuju integralnim računom, ali on nije potreban za njihovu primjenu.[1]

Primjer geometrijskog tijela torusa nastalog rotacijom kruga


Prvo Pappus-Guldinovo pravilo: Oplošje plohe nastale rotacijom ravninske linije oko osi koja leži u ravnini linije, a ne presijeca liniju, računa se kao umnožak duljine linije i opsega kružnice (ili duljine kružnog luka) po kojoj se giba težište linije pri toj rotaciji.

Primjer izračuna oplošja torusa po formuli:

A=(2πr)(2πR)=4π2Rr.

Tu je r polumjer male kružnice koja rotira (u "prozirnom" dijelu torusa iscrtano je nekoliko položaja te kružnice), dok R označava polumjer kružnice po kojoj rotira središte (težište) male kružnice.

Drugo Pappus-Guldinovo pravilo: Obujam tijela nastalog rotacijom ravne plohe oko osi koja leži u istoj ravnini, a ne presijeca plohu, računa se kao umnožak površine plohe i opsega kružnice (ili duljine kružnog luka) po kojoj se giba težište plohe pri toj rotaciji.

Primjer izračuna volumena torusa po formuli:

V=(πr2)(2πR)=2π2Rr2.

Izvori

Predložak:Izvori

Poveznice

Vanjske poveznice

  1. Jeff Suzuki, A history of mathematics, Prentice Hall, 2002