Centripetalna sila

Izvor: testwiki
Inačica 1919 od 13. listopada 2023. u 14:54 koju je unio imported>Argo Navis (−Kategorija:Dinamika; +Kategorija:Sila; +Kategorija:Mehanika; +Kategorija:Kinematika uz pomoć dodatka HotCat)
(razl) ← Starija inačica | vidi trenutačnu inačicu (razl) | Novija inačica→ (razl)
Prijeđi na navigaciju Prijeđi na pretraživanje

Predložak:Wikiprojekt 10000/Ikona Predložak:Razlikovati

Na česticu u gibanju kratko i sve češće djeluju sile koje njenu putanju zakrivljuju prema kružnici. Između djelovanja sila čestica se giba pravocrtno. Centripetalnom silom nazivamo silu koja neprekidno tijelu daje centripetalnu akceleraciju prema središtu kružnice po kojoj se ono giba.

Predložak:NavigacijaFizika Centripetalna sila ime je za svaku silu koja česticu ili tijelo s pravocrtne putanje neprestano skreće prema određenom središtu.[1][2]Predložak:Is Centripetalna sila nije fundamentalna sila, nego samo naziv za rezultantu silā koja uzrokuje dano kružno (zakrivljeno) gibanje. Kada satelit kruži oko Zemlje, kao centripetalna sila služi gravitacijska sila kojom Zemlja privlači satelit; kada se tijelo vrti na niti, napetost niti održava ga na kružnoj putanji,[2]Predložak:Is a ako se nabijena čestica giba u magnetskom polju, ulogu centripetalne sile ima Lorentzova sila.

Tijelo na koje ne djeluju sile zbog tromosti se giba pravocrtno i stalnom brzinom. Potrebna je sila koja će tijelu mijenjati brzinu, odnosno barem njezin smjer, kako bi putanja tijela postala zakrivljena.[2]Predložak:IsAko ta sila djeluje samo povremeno i trenutno, popravljajući putanju tako da ona ukupno nalikuje zakrivljenoj putanji, putanja će između djelovanja sila i dalje biti pravocrtna. Što su korekcije putanje češće, to je putanja jednoličnija. O centripetalnoj sili govorimo u granici stalno djelujuće sile koja tijelo održava na glatkoj zakrivljenoj putanji, odnosno daje mu centripetalnu akceleraciju.

Iako se centripetalna sila najčešće razmatra za jednoliko gibanje po kružnici, moguća su poopćenja na ubrzano kružno gibanje i gibanje po bilo kojoj zakrivljenoj putanji.

Centripetalna sila pri jednolikom kružnom gibanju

Tijelo koje nije u stanju mirovanja ili jednolikog gibanja po pravcu bez iznimke se nalazi pod djelovanjem neke sile, koja mu daje ubrzanje.[1] Iz kinematike je poznato da je za jednoliko gibanje po kružnici polumjera r brzinom v potrebno da je akceleracija stalno usmjerena prema središtu vrtnje. Ta centripetalna akceleracija iznosi[2]Predložak:Is

ac=v2r

Iz Newtonovog zakona koji kaže da svaku akceleraciju uzrokuje sila, koja je razmjerna masi i akceleraciji, slijedi da iznos centripetalne sile treba biti[2]Predložak:Is

Fc=mac=mv2r

Ta sila je, kao i centripetalna akceleracija, u svakom trenutku usmjerena prema središtu vrtnje.

Gibanje po kružnici može se s vremenom t opisati i pomoću varijable kuta φ(t) i kutne brzine ω(t)=ddtφ(t). Obodna brzina jest v=ωr pa je centripetalna sila Fc=mω2r. Za danu frekvenciju kružnog gibanja (kutnu brzinu), što je radijus vrtnje veći, to razmjerno treba veća biti centripetalna sila. Za dani radijus vrtnje, povećanje frekvencije vrtnje traži kvadratno povećanje sile koja će djelovati kao centripetalna sila.[2]Predložak:Is

Pri kružnom gibanju trenutna se akceleracija (time i sila koja djeluje na masu) može na putanji razložiti na tangencijalnu komponentu, koja tijelo ubrzava (ili usporava) u smjeru putanje, i radijalnu komponentu, koja je okomita na putanju i mijenja smjer (vektora) brzine, ali ne i iznos brzine.[2]Predložak:Is Radijalna sila općenito odgovara onom što se zove centripetalnom silom, posebno u slučaju kada sila na tijelo nema tangencijalnu komponentu.

Budući da je centripetalna (radijalna) sila okomita na putanju, ona ne obavlja rad: ta sila mijenja smjer, ali ne i iznos brzine, što znači da tijelu ne povećava kinetičku energiju.

Primjeri

Gibanje nabijene čestice u magnetskom polju

Magnetsko polje Helmholtzovih zavojnica putanju elektrona emitiranih iz elektronske cijevi na dnu vakuumiranog staklenog balona čini kružnom. Putanja se vidi jer se elektroni sudaraju s molekulama preostalog plina, koje onda svijetle.

Kada nabijena čestica uleti u jednoliko magnetsko polje u ravnini koja je okomita na to polje na nju će djelovati Lorentzova sila razmjerna naboju čestice q, njenoj brzini v i iznosu polja B. Sila djeluje u ravnini kretanja čestice i u svakom je trenutku okomita na njezinu trenutnu brzinu. Može se pokazati da takva sila uzrokuje gibanje čestice po kružnici. Lorentzova sila iznosa FL=qvB djeluje kao centripetalna sila, čiji iznos za gibanje na radijusu r treba biti Fc=mv2r:

mv2r=qvB.

Uzimajući u obzir odnos obodne i kutne brzine pri kružnom gibanju, v=ωr, kružna frekvencija (tzv. ciklotronska frekvencija) i polumjer putanje za dano se magnetsko polje i brzinu čestice mogu odrediti iz

ωc=qBm
rc=mvqB.

Period kružnog gibanja u danom polju jest Tc=2πωc=2πmqB. Period i frekvencija vrtnje ne ovise o linearnoj brzini čestice ubačene u magnetsko polje, nego samo o jačini polja.

Sve to vrijedi dok su brzine relativno male (nerelativističke) i dok je gubitak energije nabijene čestice emisijom elektromagnetskog zračenja zanemariv. U uređajima poput sinkrotrona to nije slučaj. U kvantnoj fizici, na vrlo malim prostornim skalama, energija čestice u magnetskom polju ne može poprimiti bilo koju vrijednost, nego zbog Landauove kvantizacije postoje dopušteni energijski nivoi čija visina ovisi i o klasičnoj ciklotronskoj frekvenciji.

Povezani članci

Izvori

Predložak:Izvori