Popis integrala hiperbolnih funkcija: razlika između inačica

Izvor: testwiki
Prijeđi na navigaciju Prijeđi na pretraživanje
imported>Quantuntun
hrvatsko nazivlje
 
(Nema razlike inačica)

Posljednja izmjena od 16. listopada 2020. u 11:07

Slijedi popis integrala (antiderivacija funkcija) hiperbolnih funkcija. Za potpun popis integrala funkcija, pogledati tablica integrala i popis integrala.

Za konstantu c se pretpostavlja da je različita od nule.

shcxdx=1cchcx+C
chcxdx=1cshcx+C
sh2cxdx=14csh2cxx2+C
ch2cxdx=14csh2cx+x2+C
shncxdx=1cnshn1cxchcxn1nshn2cxdx+C(za n>0)
također: shncxdx=1c(n+1)shn+1cxchcxn+2n+1shn+2cxdx+C(za n<0n1)
chncxdx=1cnshcxchn1cx+n1nchn2cxdx+C(za n>0)
također: chncxdx=1c(n+1)shcxchn+1cxn+2n+1chn+2cxdx+C(za n<0n1)
dxshcx=1cln|thcx2|+C
također: dxshcx=1cln|chcx1shcx|+C
također: dxshcx=1cln|shcxchcx+1|+C
također: dxshcx=1cln|chcx1chcx+1|+C
dxchcx=2carctgecx+C
dxshncx=chcxc(n1)shn1cxn2n1dxshn2cx+C(za n1)
dxchncx=shcxc(n1)chn1cx+n2n1dxchn2cx+C(za n1)
chncxshmcxdx=chn1cxc(nm)shm1cx+n1nmchn2cxshmcxdx+C(za mn)
također: chncxshmcxdx=chn+1cxc(m1)shm1cx+nm+2m1chncxshm2cxdx+C(za m1)
također: chncxshmcxdx=chn1cxc(m1)shm1cx+n1m1chn2cxshm2cxdx+C(za m1)
shmcxchncxdx=shm1cxc(mn)chn1cx+m1mnshm2cxchncxdx+C(za mn)
također: shmcxchncxdx=shm+1cxc(n1)chn1cx+mn+2n1shmcxchn2cxdx+C(za n1)
također: shmcxchncxdx=shm1cxc(n1)chn1cx+m1n1shm2cxchn2cxdx+C(za n1)
xshcxdx=1cxchcx1c2shcx+C
xchcxdx=1cxshcx1c2chcx+C
thcxdx=1cln|chcx|+C
cthcxdx=1cln|shcx|+C
thncxdx=1c(n1)thn1cx+thn2cxdx+C(za n1)
cthncxdx=1c(n1)cthn1cx+cthn2cxdx+C(za n1)
shbxshcxdx=1b2c2(bshcxchbxcchcxshbx)+C(za b2c2)
chbxchcxdx=1b2c2(bshbxchcxcshcxchbx)+C(za b2c2)
chbxshcxdx=1b2c2(bshbxshcxcchbxchcx)+C(za b2c2)
sh(ax+b)sin(cx+d)dx=aa2+c2ch(ax+b)sin(cx+d)ca2+c2sh(ax+b)cos(cx+d)+C
sh(ax+b)cos(cx+d)dx=aa2+c2ch(ax+b)cos(cx+d)+ca2+c2sh(ax+b)sin(cx+d)+C
ch(ax+b)sin(cx+d)dx=aa2+c2sh(ax+b)sin(cx+d)ca2+c2ch(ax+b)cos(cx+d)+C
ch(ax+b)cos(cx+d)dx=aa2+c2sh(ax+b)cos(cx+d)+ca2+c2ch(ax+b)sin(cx+d)+C

Predložak:Popisi integrala